Uncertainty in Measurements | 9th Class Physics PTCB | Easy Explanation with Examples & Formula

  • By Bilal Ansar
  • 09 Nov 2025
  • 0 Comments

Uncertainty in Measurements | 9th Class Physics PTCB | Easy Explanation with Examples & Formula

โ“ Uncertainty in Measurements: Simple Guide ๐ŸŒŸ Introduction

Imagine trying to measure your exact height ๐Ÿ“. Can you say you're exactly 150 cm? Not 150.1 cm? Not 149.9 cm? ๐Ÿค”

The truth is: We can never be 100% sure! There's always a small uncertainty (doubt)! โš ๏ธ

๐ŸŽฏ What is Uncertainty?

Uncertainty = How much doubt or error might be in your measurement

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Understanding Uncertainty โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ โ”‚ โ”‚ You measure: 10.3 cm ๐Ÿ“ โ”‚ โ”‚ โ”‚ โ”‚ But actual might be: โ”‚ โ”‚ โ€ข 10.25 cm โ”‚ โ”‚ โ€ข 10.3 cm โ”‚ โ”‚ โ€ข 10.35 cm โ”‚ โ”‚ โ”‚ โ”‚ So we write: 10.3 ยฑ 0.05 cm โ”‚ โ”‚ โ†‘ โ”‚ โ”‚ Uncertainty! โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ๐Ÿ’ก Key Point: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ ๐ŸŽฏ PERFECT measurement โ”‚ โ”‚ is IMPOSSIBLE! โŒ โ”‚ โ”‚ โ”‚ โ”‚ โœ… There's ALWAYS some โ”‚ โ”‚ uncertainty! โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ๐Ÿ“ Why Does Uncertainty Happen? Main Reason: Instrument Limitation! ๐Ÿ”ง

Every tool has a smallest division (least count). You can't measure smaller than that!

โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Ruler Example ๐Ÿ“ โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Ruler with smallest division = 1 mm

Can you measure: โœ… 5.0 cm (yes!) โœ… 5.1 cm (yes!) โœ… 5.2 cm (yes!)

โŒ 5.15 cm (NO! Too small!) โŒ 5.23 cm (NO! Too small!)

Your ruler can't "see" anything smaller than 1 mm! ๐Ÿ‘๏ธ ๐Ÿ“– Understanding Uncertainty with Example ๐ŸŽฏ Measuring a Line with Ruler โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Line Measurement Example โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Ruler (smallest division = 1 mm):

โ”œโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ค 10.0 10.1 10.2 10.3 10.4 10.5 cm

Line end is here: โ–ผ โ”œโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ–‘โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ค 10.0 10.1 10.2 10.3 10.4 10.5 cm

Where exactly? ๐Ÿค” โ€ข Is it 10.2 cm? โ€ข Is it 10.25 cm? โ€ข Is it 10.3 cm?

Hard to tell exactly! โš ๏ธ ๐Ÿ“ The Convention (Rule) for Reading ๐ŸŽฏ Two Cases: โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ CASE 1: Before Midpoint โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Line end BEFORE middle:

โ”œโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ–‘โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ค 10.2 โ–ฒ 10.3 10.4 cm โ”‚ Before middle!

Read as: 10.2 cm โœ… (Stay at previous division)

โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€

โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ CASE 2: After Midpoint โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Line end AFTER middle:

โ”œโ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ–‘โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”ค 10.2 โ–ฒ 10.3 10.4 cm โ”‚ After middle!

Read as: 10.3 cm โœ… (Go to next division) ๐ŸŽฏ Visual Guide - Where to Read? โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Reading Convention Guide โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

One small division (1 mm):

โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค 10.2 Midpoint 10.3 cm โ–ฒ โ–ฒ โ–ฒ โ”‚ โ”‚ โ”‚ Read as Exactly Read as 10.2 cm 10.25 cm 10.3 cm โœ… ๐Ÿค” โœ…

โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค Zone 1 โ”‚ Zone 2 (10.2 cm)โ”‚(10.3 cm)

If line in Zone 1 โ†’ Read 10.2 โœ… If line in Zone 2 โ†’ Read 10.3 โœ… โš ๏ธ Calculating Uncertainty ๐ŸŽฏ Formula: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Uncertainty = ยฑ (Least Count รท 2) โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ๐Ÿ“Š Example with Ruler: โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Ruler Uncertainty โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Least Count = 1 mm = 0.1 cm

Uncertainty = ยฑ (0.1 รท 2) = ยฑ 0.05 cm

So if you measure 10.3 cm:

Write as: 10.3 ยฑ 0.05 cm โœ…

This means actual value is somewhere between: โ€ข 10.25 cm (10.3 - 0.05) โ€ข 10.35 cm (10.3 + 0.05)

โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€

Visual representation:

10.25 10.3 10.35 โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ—โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ””โ”€โ”€uncertaintyโ”€โ”€โ”˜ ๐Ÿ“Š Different Instruments, Different Uncertainties โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Instrument โ”‚ Uncertainty โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ โ”‚ โ”‚ โ”‚ Ruler ๐Ÿ“ โ”‚ ยฑ 0.5 mm โ”‚ โ”‚ (LC = 1 mm) โ”‚ (ยฑ 0.05 cm) โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ Vernier ๐Ÿ”ง โ”‚ ยฑ 0.05 mm โ”‚ โ”‚ (LC = 0.1 mm) โ”‚ (ยฑ 0.005 cm) โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ Micrometer ๐Ÿ”ฉ โ”‚ ยฑ 0.005 mm โ”‚ โ”‚ (LC = 0.01 mm) โ”‚ (ยฑ 0.0005 cm) โ”‚ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Pattern: Smaller least count โ†“ Smaller uncertainty โ†“ More accurate! โœ… ๐Ÿ”ฌ Real Example 1: Measuring Wire Diameter โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Measuring Thin Wire ๐Ÿ”Œ โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Using Ruler (LC = 1 mm): โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Reading = 2 mm Uncertainty = ยฑ 0.5 mm

Result: 2 ยฑ 0.5 mm Could be: 1.5 mm to 2.5 mm (Very uncertain! โŒ)

โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€

Using Micrometer (LC = 0.01 mm): โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Reading = 2.15 mm Uncertainty = ยฑ 0.005 mm

Result: 2.15 ยฑ 0.005 mm Could be: 2.145 to 2.155 mm (Much more certain! โœ…)

Micrometer is BETTER! ๐ŸŽฏ ๐Ÿ•ฐ๏ธ Real Example 2: Pendulum Time โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Timing One Swing โฑ๏ธ โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Method 1: Time 1 swing โŒ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ ๐ŸŽˆ โ•ฑโ•ฒ โ•ฑ โ•ฒ

Reading = 1.2 seconds Uncertainty = ยฑ 0.1 second

Result: 1.2 ยฑ 0.1 s (Big uncertainty! 8%)

โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€

Method 2: Time 30 swings โœ… โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ ๐ŸŽˆ ๐ŸŽˆ ๐ŸŽˆ ... (30 swings)

Total time = 36.0 seconds Uncertainty = ยฑ 0.1 second

Time per swing = 36.0 รท 30 = 1.2 seconds

Uncertainty per swing = 0.1 รท 30 = ยฑ 0.003 s

Result: 1.2 ยฑ 0.003 s (Much smaller uncertainty! โœ…) ๐Ÿ’ก Why is Method 2 Better? โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Uncertainty gets DIVIDED โ”‚ โ”‚ when you take average! โ”‚ โ”‚ โ”‚ โ”‚ 30 swings = 30 times more โ”‚ โ”‚ accurate! ๐ŸŽฏ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ๐Ÿ“ฑ Digital Instruments Uncertainty ๐ŸŽฏ Special Case! โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Digital Stopwatch ๐Ÿ“ฑ โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Display shows: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ 12.34 s โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Last digit keeps changing: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ 12.34 s โ”‚ โ†’ 12.35 s โ†’ 12.34 s โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

The number "flickers"! โœจ

Uncertainty = ยฑ 1 in last digit = ยฑ 0.01 s

Write as: 12.34 ยฑ 0.01 s โœ… ๐Ÿ“Š Digital vs Analog: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Analog Stopwatch โฑ๏ธ โ”‚ โ”‚ (with needles) โ”‚ โ”‚ Uncertainty = ยฑ 0.05 s โ”‚ โ”‚ โ”‚ โ”‚ Digital Stopwatch ๐Ÿ“ฑ โ”‚ โ”‚ (with numbers) โ”‚ โ”‚ Uncertainty = ยฑ 0.01 s โ”‚ โ”‚ โ”‚ โ”‚ Digital is MORE accurate! โœ… โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ๐Ÿ“ How to Write Measurements Properly โœ… Correct Ways: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Proper Notation โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ โ”‚ โ”‚ โœ… 10.3 ยฑ 0.05 cm โ”‚ โ”‚ โœ… (10.3 ยฑ 0.05) cm โ”‚ โ”‚ โœ… 10.3 cm (ยฑ0.05 cm) โ”‚ โ”‚ โ”‚ โ”‚ All show: โ”‚ โ”‚ โ€ข Measurement: 10.3 cm โ”‚ โ”‚ โ€ข Uncertainty: ยฑ 0.05 cm โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โŒ Wrong Ways: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Incorrect Notation โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ โ”‚ โ”‚ โŒ 10.3 cm โ”‚ โ”‚ (No uncertainty shown!) โ”‚ โ”‚ โ”‚ โ”‚ โŒ 10.3cm ยฑ 0.05 โ”‚ โ”‚ (Units unclear!) โ”‚ โ”‚ โ”‚ โ”‚ โŒ 10.3 ยฑ 0.5 cm โ”‚ โ”‚ (Wrong uncertainty!) โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ๐ŸŽฏ Ways to Reduce Uncertainty โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ How to Reduce Uncertainty โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ โ”‚ โ”‚ 1๏ธโƒฃ Use better instruments โ”‚ โ”‚ (smaller least count) ๐Ÿ”ง โ”‚ โ”‚ โ”‚ โ”‚ 2๏ธโƒฃ Take multiple readings โ”‚ โ”‚ (then average) ๐Ÿ“Š โ”‚ โ”‚ โ”‚ โ”‚ 3๏ธโƒฃ Measure larger quantities โ”‚ โ”‚ (e.g., 30 swings not 1) โฑ๏ธ โ”‚ โ”‚ โ”‚ โ”‚ 4๏ธโƒฃ Use digital instruments โ”‚ โ”‚ (more precise) ๐Ÿ“ฑ โ”‚ โ”‚ โ”‚ โ”‚ 5๏ธโƒฃ Careful technique โ”‚ โ”‚ (avoid human error) ๐Ÿ‘ค โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ๐Ÿ“Š Complete Example: Lab Report โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Student Lab Report ๐Ÿ“ โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Experiment: Measure length of desk Student: Ahmed Date: Today

MEASUREMENTS: โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Trial 1: 120.2 cm Trial 2: 120.3 cm Trial 3: 120.1 cm Trial 4: 120.2 cm Trial 5: 120.3 cm

Average = (120.2+120.3+120.1+120.2+120.3) รท 5 = 601.1 รท 5 = 120.22 cm

Instrument: Metre rule Least Count: 1 mm = 0.1 cm Uncertainty: ยฑ 0.05 cm

FINAL RESULT: โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Length = 120.2 ยฑ 0.05 cm โœ…

This means actual length is between 120.15 and 120.25 cm

Conclusion: Measurement complete with known uncertainty! ๐ŸŽฏ ๐Ÿ’ก Important Points to Remember! โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Key Takeaways ๐ŸŽฏ โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ โ”‚ โ”‚ โš ๏ธ NO perfect measurement! โ”‚ โ”‚ โ”‚ โ”‚ ๐Ÿ“ Uncertainty = ยฑ (LC รท 2) โ”‚ โ”‚ โ”‚ โ”‚ ๐Ÿ”ง Better tool = Less uncertain โ”‚ โ”‚ โ”‚ โ”‚ ๐Ÿ“Š More readings = More accurateโ”‚ โ”‚ โ”‚ โ”‚ โœ๏ธ Always write uncertainty! โ”‚ โ”‚ โ”‚ โ”‚ ๐ŸŽฒ Last digit may fluctuate โ”‚ โ”‚ (in digital instruments) โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ๐ŸŽฎ Quick Practice! โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Question 1: โ•‘ โ•‘ Ruler LC = 1 mm โ•‘ โ•‘ What is uncertainty? โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Answer: ยฑ 0.5 mm (or ยฑ 0.05 cm) โœ…

Calculation: Uncertainty = LC รท 2 = 1 mm รท 2 = 0.5 mm โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Question 2: โ•‘ โ•‘ You measure 15.4 cm with โ•‘ โ•‘ ruler (LC = 1 mm). โ•‘ โ•‘ How to write properly? โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Answer: 15.4 ยฑ 0.05 cm โœ… (Show measurement AND uncertainty!) โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ Question 3: โ•‘ โ•‘ Why measure 30 swings โ•‘ โ•‘ instead of 1 swing? โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Answer: Uncertainty gets divided by 30, making result much more accurate! ๐ŸŽฏ โœจ Final Summary โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Uncertainty Summary ๐Ÿ“Š โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ โ”‚ โ”‚ What: Doubt in measurement โ”‚ โ”‚ โ”‚ โ”‚ Why: Instrument limitation โ”‚ โ”‚ โ”‚ โ”‚ Formula: ยฑ (LC รท 2) โ”‚ โ”‚ โ”‚ โ”‚ Reduce by: โ”‚ โ”‚ โ€ข Better instruments ๐Ÿ”ง โ”‚ โ”‚ โ€ข Multiple readings ๐Ÿ“Š โ”‚ โ”‚ โ€ข Averaging โž— โ”‚ โ”‚ โ”‚ โ”‚ Always write it! โœ๏ธ โ”‚ โ”‚ Example: 10.3 ยฑ 0.05 cm โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

You're now an uncertainty expert! ๐Ÿ†๐Ÿ“

Remember: "Good scientists always show their uncertainty!" ๐Ÿ”ฌโœจ

Leave a Comment

name*
email*
message*

Subscribe Now

Get the updates, offers, tips and enhance your page building experience

Up to Top